Integer flows and cycle covers

نویسنده

  • Genghua Fan
چکیده

Results related to integer flows and cycle covers are presented. A cycle cover of a graph G is a collection %Y of cycles of G which covers all edges of G; U is called a cycle m-cover of G if each edge of G is covered exactly m times by the members of V. By using Seymour’s nowhere-zero 6-flow theorem, we prove that every bridgeless graph has a cycle 6-cover associated to covering of the edges by 10 even subgraphs (an even graph is one in which each vertex is of even degree). This result together with the cycle 4-cover theorem implies that every bridgeless graph has a cycle m-cover for any even number m z 4. We also prove that every graph with a nowhere-zero 4-flow has a cycle cover V such that the sum of lengths of the cycles in V is at most [E(G)1 + IV(G)1 -2, unless G belongs to a very special class of graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Flows in Graphs and Integer Flows in Signed Graphs

My research focuses on the flow problems consisting of two parts, vector flows in graphs and integer flows in signed graphs. The concept of integer flows was first introduced by Tutte (1949) as a refinement of map coloring. In fact, integer flows is the dual concept of map coloring for planar graphs. This is often referred as duality theorem. Tutte proposed three celebrated flow conjectures whi...

متن کامل

Flows, flow-pair covers and cycle double covers

In this paper, some earlier results by Fleischner [H. Fleischner, Bipartizing matchings and Sabidussi’s compatibility conjecture, DiscreteMath. 244 (2002) 77–82] about edge-disjoint bipartizingmatchings of a cubic graphwith a dominating circuit are generalized for graphs without the assumption of the existence of a dominating circuit and 3-regularity. A pair of integer flows (D, f1) and (D, f2)...

متن کامل

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

Projecting an Extended Formulation for Mixed-Integer Covers on Bipartite Graphs

We consider the mixed integer version of bipartite vertex cover. This is equivalent to the mixed integer network dual model, recently introduced in [2], that generalizes several mixed integer sets arising in production planning. We derive properties of inequalities that are valid for the convex hull of the mixed integer bipartite covers by projecting an extended formulation onto the space of th...

متن کامل

Path Partitions, Cycle Covers and Integer Decomposition

A polyhedron P has the integer decomposition property, if every integer vector in kP is the sum of k integer vectors in P . We explain that the projections of polyhedra defined by totally unimodular constraint matrices have the integer decomposition property, in order to deduce the same property for coflow polyhedra defined by Cameron and Edmonds. We then apply this result to the convex hull of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 54  شماره 

صفحات  -

تاریخ انتشار 1992